6º Congresso da Rede Brasileira de Tecnologia de Biodiesel
9º Congresso Brasileiro de Plantas Oleaginosas, Óleos, Gorduras e Biodiesel

BIODIESEL:
10 ANOS DE PESQUISA,
DESENVOLVIMENTO
E INOVAÇÃO NO BRASIL

VOLUME 2
ANAIS - ARTIGOS CIENTÍFICOS
2016
Biodiesel:
10 Anos de Pesquisa, Desenvolvimento e Inovação no Brasil

Anais - Trabalhos Científicos

Editores:
Pedro Castro Neto
Antônio Carlos Fraga
Rafael Silva Menezes
Gustavo de Lima Ramos

Natal, 22 a 25 de Novembro de 2016
Rio Grande do Norte - Brasil
Congresso da Rede Brasileira de Tecnologia de Biodiesel
Anais do 6. Congresso da Rede Brasileira de Tecnologia
de Biodiesel, 9. Congresso Brasileiro de Plantas Oleaginosas,
Óleos, Gorduras e Biodiesel, Natal, RN, 22 a 25 de novembro
de 2016 / Editores: Pedro Castro Neto ... [et al.]. – Lavras :
UFLA, 2016.
1432 p.

Bibliografias
ISBN 978-85-65615-02-0
1. Biodiesel. 2. Plantas oleaginosas. 3. óleos vegetais. I

Castro Neto, Pedro et al. II. Congresso Brasileiro de Plantas
Oleaginosas, óleos, Gorduras e Biodiesel.

CDD – 633.85
APRESENTAÇÃO

O Ministério da Ciência, Tecnologia, Inovações e Comunicações (MCTIC) possui papel fundamental no processo de aprimoramento tecnológico do biodiesel brasileiro. No âmbito do Programa Nacional de Produção e Uso do Biodiesel (PNPB), o módulo de Desenvolvimento Tecnológico é coordenado pelo MCTIC e objetiva organizar e fomentar a base tecnológica existente no País e norteá-la a gerar resultados que atendam às demandas do PNPB.

Nesse sentido, foi implantada a Rede Brasileira de Tecnologia de Biodiesel (RBTB), que articula os diversos atores envolvidos, permitindo a convergência de esforços e a otimização de investimentos públicos na busca por soluções para os desafios tecnológicos da cadeia produtiva, levando em consideração aspectos de sustentabilidade, geração de empregos e desenvolvimento regional.

Como ferramenta de avaliação e divulgação dos resultados dos projetos fomentados, o MCTIC promove, desde 2006, o Congresso da Rede Brasileira de Tecnologia de Biodiesel e a Universidade Federal de Lavras promove, desde 2004, o Congresso Brasileiro de Plantas Oleaginosas, Óleos, Corduras e Biodiesel. Eventos que em suas edições anteriores foram um sucesso, tanto em termos de público, como na divulgação do conhecimento gerado por pesquisadores de inúmeras universidades e institutos de pesquisa de todo o país. A partir de 2010 esses dois eventos foram realizados simultaneamente constituindo o maior evento técnico científico em biodiesel do mundo. Este evento é referência para as áreas de produção de plantas oleaginosas, óleos, gorduras e biodiesel.
APRESENTAÇÃO

É estratégico para o setor de biodiesel possuir fóruns de discussão para se debater temas ligados à pesquisa, desenvolvimento e inovação em Biodiesel, como também promover encontros entre especialistas, estudantes, empresários e a sociedade civil para discutir meios para o desenvolvimento desse novo combustível.

Para o evento deste ano os organizadores receberam 884 trabalhos, dos quais 715 foram aprovados e serão expostos nas sessões de apresentação de pôster. Foram destacados trabalhos que também serão apresentados oralmente nas sessões temáticas. Busca-se atingir com a divulgação dos Anais do evento a difusão do conhecimento gerado, servindo como base para a continuidade das ações e como motivação para que a inovação tecnológica contribua de forma efetiva para os objetivos do PNPB.

Cordialmente,

Professor Pedro Castro Neto
Presidente do Congresso

Professor Antônio Carlos Fraga
Presidente da Comissão Técnico-Científica

Rafael Silva Menezes
Coordenador de ações de desenvolvimento energético RBTB-MCTIC
COMISSÃO ORGANIZADORA

Pedro Castro Neto
Presidente do Congresso Brasileiro de Plantas Oleaginosas, Óleos, Gorduras e Biodiesel

Rafael Silva Menezes
Presidente do Congresso da Rede Brasileira de Tecnologia de Biodiesel

Gustavo de Lima Ramos
Secretário-Geral

Antônio Carlos Fraga
Presidente da Comissão Técnico-Científica

Juliana Espada Lichston
Presidente da Comissão Local da UFRN

Rafael Peron Castro
Anderson Lopes Fontes
Secretários Comissão Local da UFRN
COMISSÃO TÉCNICO-CIENTÍFICA

Antônio Carlos Fraga (UFLA) - Presidente
Pedro Castro Neto (UFLA) – Vice-Presidente
Lucas Ambrosano (UEM) - Secretário
Geovani Marques Laurindo (C-Óleo/UFLA) - Secretário
Douglas Pelegrini Vaz-Tostes (C-Óleo/UFLA) – Secretário

MEMBROS DAS ÁREAS TEMÁTICAS

Aristeu Comes Tininis (IFSP)
Bill Jorge Costa (TECPAR)
Bruno Galvêas Laviola (EMBRAPA)
Cláudio José de Araujo Mota (UFRJ)
Danilo Luiz Flumignan (IFSP)
Donato Alexandre Gomes Aranda (UFRJ)
Eduardo Homem de Siqueira Cavalcanti (INT)
Fátima Menezes Bento (UFRCs)
Gustavo Lima Ramos (SETEC/MCTIC)
Iêda Maria Garcia dos Santos (UFPB)
Luiz Pereira Ramos (UFPR)
Maria Aparecida Ferreira César-Oliveira (UFPR)
Nelson Roberto Antoniosi Filho (UFG)
Paulo Anselmo Ziani Suarez (UnB)
Rafael Silva Menezes (SETEC/MCTIC)
Roberto Bianchini Derner (UFSC)
Rosenira Serpa da Cruz (UESC)
Sérgio Peres Ramos da Silva (UPE)
Simoni Margaretti Plentz Meneghetti (UFAL)
COMISSÃO EXECUTORA

Associação dos Pesquisadores em Plantas Oleaginosas, Óleos, Gorduras e Biodiesel

REVISÃO E EDITORAÇÃO

Pedro Castro Neto (UFLA)
Antônio Carlos Fraga (UFLA)
Lucas Ambrosano (UEM)
Douglas Pelegrini Vaz-Tostes (G-Óleo/UFLA)
Geovani Marques Laurindo (G-Óleo/UFLA)

COMISSÃO DE TECNOLOGIA DA INFORMAÇÃO

Pedro Castro Neto (UFLA) – Presidente
Antônio Carlos Fraga (UFLA)
Gilson Miranda Júnior (BCC/UFLA)
Jaime Daniel Corrêa Mendes (BCC/UFLA)
João Paulo de Araújo (BCC / G-Óleo/UFLA)
Fergunson Antônio Comes Peres de Souza (G-Óleo/UFLA)
Henrique Fidencio (G-Óleo/UFLA)
Arnon de Castro Oliveira (G-Óleo/UFLA)
Saulo Kirchmaier Teixeira (G-Óleo/UFLA)

AGRADECIMENTOS

Apoiadores, Autores, Congressistas, Expositores e Palestrantes.
MEMBROS DA G-ÓLEO
Associação dos Pesquisadores em Plantas Oleaginosas, Óleos, Corduras e Biodiesel

Pedro Castro Neto (Presidente)
Lucas Ambrosano (Vice-Presidente)
Douglas Pelegrini Vaz-Tostes (Tesoureiro)
Vinicius Reis Bastos Martins (Secretário)
Antônio Carlos Fraga
Arnon de Castro Oliveira
Bárbara Lemes
Camilla Freitas Maia
Camilo José Rodrigues Dal Bó
Carlos Henrique Santos Fonseca
Carluíco Queiroz Santos
Clara de Almeida Filippo
Daniel Augusto de Souza Borges
Danilo da Silva Souza
Diego Fiausino Brasileiro
Erika Tokuda
Ferguson Son Antonio Gomes Peres de Souza
Gabriel Dlouhy Alcon
Gabriele de Faria Castro
Geovani Marques Laurindo
Gilson Miranda Junior
Guilherme de Oliveira Martins
Gustavo de Almeida Adolpho
Hamiton Olinto Pimenta Lima Junior
Henrique Fidencio
Jaime Daniel Corrêa Mendes
Janice Alvarenga Santos Fraga
João Paulo de Araújo
Julia Andrade de Ávila
Juliana de Xisto Silva
Maraiza Assis Mattar Silva
Marcela Santos Moreira
Matheus Sterzo Nilsson
Paulo Rogério Ribeiro Pereira
Pedro Henrique Barcelos Mota
Pedro Rodolfo Bianchim de Oliveira
Rafael Peron Castro
Rodrigo Martins Santos
Sandra Regina Peron Castro
Sandro Freire de Araújo
Saulo Kirchmaier Teixeira
Stênio Carvalho
Thalita Caroline Azevedo Gonçalves
Thiago Matioli
Vitor Favareto Silva
REALIZAÇÃO

O Núcleo de Estudos em Plantas Oleaginosas, Óleos, Gorduras e Biocombustíveis (G-Óleo) idealizado pelos professores Antônio Carlos Fraga do Departamento de Agricultura e Pedro Castro Neto do Departamento de Engenharia da Universidade Federal de Lavras, desde 2006 promove a produção científica e realiza eventos acadêmicos voltados a estudantes, pesquisadores e empreendedores que atuam nas diversas etapas da cadeia produtiva do biodiesel, transferindo ao produtor rural por meio de eventos de extensão, onde inovações da pesquisa e indústria são levadas e apresentadas à comunidade.

A diversidade das áreas de atuação do grupo torna os projetos amplamente diversificados, englobando atividades em fitotecnia, química, projetos e manutenção de máquinas agrícolas e industriais, gerência e tecnologia de informação, administração, extração e purificação de óleos e gorduras, gestão de coprodutos e resíduos, todas associadas à produção científica visando inovação para a indústria e melhoria na produção rural.
REALIZAÇÃO

Com o objetivo de impulsionar o desenvolvimento tecnológico e a inovação do biodiesel no Brasil, o Ministério da Ciência, Tecnologia, Inovações e Comunicações (MCTIC) promove diversas ações, principalmente por meio da Rede Brasileira de Tecnologia de Biodiesel (RBTE), que envolve diversos atores da cadeia produtiva. Isso permite a convergência de esforços e a otimização de investimentos públicos, buscando soluções para os desafios tecnológicos do setor. Desde 2006, a Secretaria de Desenvolvimento Tecnológico e Inovação (SETEC/MCTIC) promove o Congresso da RBTE com objetivo de disseminar os conhecimentos tecnológicos gerados, a divulgação das potencialidades da Rede, as competências e os trabalhos em andamento. A realização do evento envolve a comunidade científica e empresarial e abrange sete diferentes áreas temáticas: Matéria Prima; Armazenamento, Estabilidade e Problemas Associados; Caracterização e Controle da Qualidade; Co-Produtos; Produção do Biocombustível; Uso de Biodiesel; e Políticas Públicas e Desenvolvimento Sustentável.
REALIZAÇÃO

SECRETARIA DE DESENVOLVIMENTO TECNOLÓGICO E INOVAÇÃO

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA, INOVAÇÕES E COMUNICAÇÕES

BRASIL

GOVERNO FEDERAL

UNIVERSIDADE FEDERAL DE LAVRAS

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE
APOIO

CNPq

CAPES

Finep

FAPEMIG

FAPERN

APROBIO

Olea

TECNINT

Indústria de Equipamentos

ABIOVE

UBrabio

Embrapa

INSTITUTO NACIONAL DE TECNOLOGIA
TRABALHOS CIENTÍFICOS APROVADOS
Biofilme formado durante o armazenamento simulado de diesel, misturas (B5, B10, B50) e B100: degradação de alcanos e de ésteres

Francielle Bücke (PPGMMAA/UFRGS, franbucker@gmail.com), Michele Espinosa da Cunha (IQ/UFRGS, micheleacunha@hotmail.com), Patrícia Dorr de Quadros (PPGMMAA/UFRGS, patiquadros11@yahoo.com.br), Sabrina Becker (PPGMMAA/UFRGS, sabrinabeker@gmail.com), Juciana Clarice Cazarolli (PPGMMAA/UFRGS, jucianacazarolli@gmail.com), Elina Bastos Caramão (IQ/UFRGS, elina@ufrgs.br), Ana Paula Guedes Frazzon (PPGMMAA/UFRGS, ana.frazzon@ufrgs.br), Fátima Menezes Bento (PPGMMAA/UFRGS, fatima.bento@ufrgs.br)

Palavras Chave: Biodegradação, GC/qMS, alcanos, ésteres de ácidos graxos, armazenamento

1 - Introdução

A preocupação com perdas econômicas no setor de combustíveis é uma questão de interesse mundial, sendo que problemas associados à contaminação microbiana de diesel e biodiesel, durante o transporte e o armazenamento, são de grande preocupação neste sentido1-5. A demanda mundial por combustíveis oriundos de fontes alternativas de energia, como o biodiesel, vem aumentando anualmente. Além de sua origem ser matérias primas renováveis outras características associadas ao biodiesel o tornaram energias, como o biodiesel, vem aumentando anualmente.

1 - Introdução

A preocupação com perdas econômicas no setor de combustíveis é uma questão de interesse mundial, sendo que problemas associados à contaminação microbiana de diesel e biodiesel, durante o transporte e o armazenamento, são de grande preocupação neste sentido1-5. A demanda mundial por combustíveis oriundos de fontes alternativas de energia, como o biodiesel, vem aumentando anualmente. Além de sua origem ser matérias primas renováveis outras características associadas ao biodiesel o tornaram energias, como o biodiesel, vem aumentando anualmente.

A preocupação com perdas econômicas no setor de combustíveis é uma questão de interesse mundial, sendo que problemas associados à contaminação microbiana de diesel e biodiesel, durante o transporte e o armazenamento, são de grande preocupação neste sentido1-5. A demanda mundial por combustíveis oriundos de fontes alternativas de energia, como o biodiesel, vem aumentando anualmente. Além de sua origem ser matérias primas renováveis outras características associadas ao biodiesel o tornaram energias, como o biodiesel, vem aumentando anualmente.
correlação linear entre o teor de biodiesel na mistura e o crescimento microbiano.

A degradação do biodiesel é apresentada na Tabela 1. O biodiesel utilizado contém 90% soja e 10% sebo em sua composição. Em B100, C16 e C17 apresentaram as maiores porcentagens de degradação, degradação de C18 foi C18:1>C18:2>C18:0. Nas misturas, a degradação individual dos ésteres de ácidos graxos diminuiu a medida que aumentou-se a concentração de biodiesel; exceto C18:1, em B50. Em relação a ordem de biodegradação dos C18 avaliados, verificou-se que nas misturas B5, B10, e B50 a porcentagem de degradação foi 18:1>C18:2>C18:0. A Tabela 2 apresenta o percentual de degradação dos n-alcanos. Verificou-se que nas misturas, B50 e B10, 9 dos 11 n-alcanos analisados apresentaram as maiores porcentagens de biodegradação.

Tabela 1: Porcentagem da degradação dos ésteres de ácidos graxos avaliados presentes nas misturas B5, B10, B50 e em B100 após 60 dias de incubação.

<table>
<thead>
<tr>
<th>Biodegradação (%)</th>
<th>B100</th>
<th>B50</th>
<th>B10</th>
<th>B5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metil Miristato (C14:0)</td>
<td>19,0</td>
<td>38,3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metil Palmitato (C16:0)</td>
<td>20,1</td>
<td>10,6</td>
<td>12,6</td>
<td>25,5</td>
</tr>
<tr>
<td>Metil Heptadecanoato (C17:0)</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metil Estearato (C18:0)</td>
<td>13,5</td>
<td>1,5</td>
<td>16,0</td>
<td>17,5</td>
</tr>
<tr>
<td>Metil Oléico (C18:1CIS)</td>
<td>18,0</td>
<td>25,7</td>
<td>12,6</td>
<td>34,5</td>
</tr>
<tr>
<td>Metil Linoléico (C18:2)</td>
<td>16,7</td>
<td>10,9</td>
<td>17,2</td>
<td>27,7</td>
</tr>
</tbody>
</table>

- não se verificou biodegradação

Tabela 2: Porcentagem da degradação dos alcanos (C10- C20) avaliados presentes nas misturas B5, B10, B50 e em B0 após 60 dias de incubação.

<table>
<thead>
<tr>
<th>Biodegradação (%)</th>
<th>Alcanos</th>
<th>B0</th>
<th>B5</th>
<th>B10</th>
<th>B50</th>
</tr>
</thead>
<tbody>
<tr>
<td>C10</td>
<td>6,3</td>
<td>17,4</td>
<td>22,9</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>C11</td>
<td>7,9</td>
<td>4,9</td>
<td>3,0</td>
<td>1,4</td>
<td></td>
</tr>
<tr>
<td>C12</td>
<td>*</td>
<td>2,4</td>
<td>6,9</td>
<td>3,0</td>
<td></td>
</tr>
<tr>
<td>C13</td>
<td>9,2</td>
<td>13,5</td>
<td>7,0</td>
<td>19,6</td>
<td></td>
</tr>
<tr>
<td>C14</td>
<td>7,9</td>
<td>14,7</td>
<td>8,9</td>
<td>21,8</td>
<td></td>
</tr>
<tr>
<td>C15</td>
<td>9,6</td>
<td>6,4</td>
<td>16,3</td>
<td>18,5</td>
<td></td>
</tr>
<tr>
<td>C16</td>
<td>14,5</td>
<td>36,1</td>
<td>22,8</td>
<td>21,5</td>
<td></td>
</tr>
<tr>
<td>C17</td>
<td>*</td>
<td>16,1</td>
<td>35,6</td>
<td>17,4</td>
<td></td>
</tr>
<tr>
<td>C18</td>
<td>24,2</td>
<td>16,9</td>
<td>18,4</td>
<td>57,1</td>
<td></td>
</tr>
<tr>
<td>C19</td>
<td>38,3</td>
<td>18,3</td>
<td>61,3</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>C20</td>
<td>20,5</td>
<td>65,0</td>
<td>11,9</td>
<td>72,1</td>
<td></td>
</tr>
</tbody>
</table>

* não se verificou biodegradação

Para ter uma maior compreensão dos resultados, realizou-se um PCA que agrupou as misturas de diesel e biodiesel com a maior porcentagem de degradação dos ésteres de ácidos graxos do biodiesel, ou com a maior porcentagem de degradação do n-alcano do diesel em cada amostra (Figura 2). A maior degradação do éster C16:0 ocorreu nas amostras da mistura B5, em que se observou as maiores porcentagens de degradação nos n-alcanos C10 e C16. A mistura B10 apresentou correlação dos maiores percentuais de biodegradação dos n-alcanos C10, C12, C17 e C18. O maior percentual de biodegradação da etanol C14:0 está correlacionado a B50, que também apresentou correlação com as maiores porcentagens de biodegradação dos n-alcanos C13, C14, C15, C16 e C20.

Recentes estudos mostram que o biodiesel é mais biodegradável que o óleo diesel, além disso pode causar um efeito sinérgico, aumentando a biodegradação dos componentes do óleo diesel. O aumento da degradação do óleo diesel, bem como das misturas de diesel e biodiesel, quando comparado ao diesel de petróleo são o cometabolismo, em que o biodiesel atua como uma fonte de nutrientes e energia para os microrganismos que consumirão os hidrocarbonetos e irão biodegradar o óleo diesel, e, o outro fator, está relacionado às propriedades dos ésteres de ácidos graxos, que solubilizam os componentes do óleo diesel, aumentando a área de contato com óleo para os microrganismos.

Verificou-se que a presença do biodiesel favoreceu positivamente o crescimento microbiano na interface óleo-água, e a condição com o biodiesel puro (B100) apresentou a maior biomassa. Os microrganismos que compuseram o biofilme foram capazes de metabolizar os n-alcanos e os ésteres de ácidos graxos sendo que as porcentagens de degradação dos ésteres de ácidos graxos foram maiores em B5>B10>B50; e, B100 apresentou valores intermediários de degradação; a biodegradação dos alcanos foi maior em B50 e B10> B5, seguido de B0.

Ao LABBIO-UFRGS pelo financiamento da pesquisa; CAPES ao CNPq, pelo apoio financeiro e concessão de bolsas.

4 – Conclusões

5 – Agradecimentos

6 – Bibliografia

7Cremozzen, A.; Renew. Sustain. Ene.. Rev. 2015, 43 (0), 352–362.
12Sørensen, G.; Biosour. Technol. 2011, 102 (8), 5259–5264.
14ASTM E1259-10; Procedures, 2011, 1–5.