

Agenda

.Company History & Activities .Why to Produce Hydrogen?

.Renewable Hydrocarbons

.Challenges from Aviation Sector

.Technologies for SAF Production

.Fischer-Tropsch Synthesis

.Hytron Technologies

.Thermochemical

.Electrochemical

.Power-to-X

Renewable Hydrocarbons for Aviation and for a Decarbonized Future

Mesa Redonda 4 – Hidrocarbonetos Renováveis para Aviação

1° Congresso da Rede Brasileira de Bioquerosene e Hidrocarbonetos Renováveis para Aviação

R&D and Operations Director

Antonio Marin (antonio@hytron.com.br)

Our History

Hytron is a Technology Company founded in 2003, focused in Hydrogen Production & Utilization, Alternative Power Generation and Energy Storage

spin-off from the Hydrogen Laboratory at University of Campinas (UNICAMP), considered the best university in Latin America by Times Higher Education - World University Ranking, 2017

high capacity process Integrator

highly specialized professionals Including PhD's, Masters and Specialists Brazilian Pioneer in the Demonstration of Hydrogen Technologies

Worldwide Pioneer in Producing Hydrogen from Ethanol

Internationally Recognized Innovative Technology Projects

Our Activities

Energy

.Power-to-X (Hydrogen Applications)
.Photovoltaic
.Biogas Upgrading & Utilization
.Process Integration, Control & Supervision
.Energy Storage
.IoT

Gases

.On-site Generation of Industrial Gases .Consultancy for Industrial Gases Consumers .lloT

R&D

Alternative Fuels for Hydrogen Production
Alternative Power Generation
Waste Heat Recovery (Organic Rankine Cycle)
Energy Storage Technologies (inc. Flow Batteries)
SynGas & e-Products

Why to Produce Hydrogen?

Industrial Applications (Current Demanding Market)

.Hydrogenation of Oils

.Production of Chemicals and Pharmaceuticals

.Metallurgy

.Flat Glass Production

.Semiconductor Industry

.Power Industry

Why On-Site Production?

.Security of Supply .Turn-key Solution .Lower Costs .Ultrapure H₂ (up to 99.9999%) .Less Emissions

Why to Produce Hydrogen?

Energy Applications (Developing Market)

.Efficient Power Generation (Fuel Cells or Gensets)

.Power-to-X (production of e-Products, that stands for electro-Products):

.X = Power:	Long Term Energy Storage
.X = Gas:	Production of H ₂ or Synthetic Natural Gas
.X = Mobility:	H ₂ fuelled Cars, Trains, Trucks, Boats, Forklifts,, or Path to Synthetic e-Fuels
.X = Chemicals:	Path to Green Chemistry

Hytron

Renewable Hydrocarbons for Aviation and for a Decarbonized Future

Challenges from Aviation Sector

.Commercial and Executive aviation demands high autonomy from the fleet

.Mass and Volume Power Densities are crutial for feasibility (payload and range extension)

.Standardization is essential in the sector

.Since aircraft are not able to switch to alternative energy sources (like hydrogen or electricity), in the near-term future, aircraft will remain to rely on liquid fuels

.Estimative: more than 99% of airline emissions and approximately 50% of airport emissions are related to the combustion of Jet fuel

Estimative: Aviation currently accounts for approximately 2% of anthropogenic global carbon emissions. This represents close to 20 million tonnes of CO_2 equivalent per year for air transportation sector in Brazil (2014)

.CORSIA (ICAO, 2016)

.But information above stands for the direct Jet fuel usage (burned in turbines)...

Challenges from Aviation Sector – Brazil's Jet Fuel Infrastructure

Production

Distribution & Storage

Consumption

Hytron

Legenda

Challenges from Aviation Sector – Brazil's Jet Fuel Forecast

Demand 20 16 2,7% y¹ 4 4 0 2018 2026 2034 2042 2050

Stagnation of the production between close to 6.5 billion L/year (2018)

Forecasted demand to increase from 7.2 billion L in 2018 to 14.8 billion L in 2050 (linked to economic scenario)

Forecasted demand indicates growth in importations over the next decades, from 0.8 billion L in 2018 to 8.2 billion L in 2050

Rises attention to the long-term national supply security

Source: EPE – Empresa de Pesquisa Energética

Technologies for SAF Production

.Co-Processing: vegetable oils, waste and/or fats co-processed with conventional crude oil feedstocks, in existing refineries

.Alcohol to Jet (AtJ): ethanol or iso-buthanol are de-oxygenated and the remaining chains are subjected to oligomerization (blending limited to 30%)

.Synthesized Iso-Paraffins (SIP): biological route that converts C6 sugars into farnesene, which is **hydrotreated** in order to reach a SAF specification (blending limited to 10%)

.Hydrotreated Esters and Fatty Acids (HEFA): vegetable oils, waste and/or fats are de-oxygenated and then hydrotreated in order to reach a SAF specification. (Hydro)Isomerization necessary (blending limited to 50%)

.Fischer-Tropsch (FT): syngas (H₂+CO) is used to synthesize a group of desired hydrocarbons, from potentially any hydrogen and carbon source (blending limited to 50%)

*SAF: Sustainable Aviation Fuels

Fischer-Tropsch Process

.Thermochemical synthesis of hydrocarbons, typically straigh-chain alkanes, but also alkenes and alcohols, from synthesis gas (H₂+CO):

.Complex chemical systems, in which products distribution are dependent of the boundary conditions (temperature, pressure, stoichiometry, etc.)

Distribution of FT-Oil Fraction

Fischer-Tropsch System

From **integrator** point-of-view:

.**Syngas** (source, H₂:CO, contaminants, P, T, ...)

.Post-processing:

.Hydrocracking .(Hydro)isomerization .Light gases recovery .Fractionation,Heat Recovery & Integration

.Automation (SU, SS, SD)

Fischer-Tropsch System

.Syngas Production and Feeding:

.High Molecular Weight Fuels (Gasification – POX, Pirolysis, Pre-Reforming)
.Intermediate and Light Fuels (Steam-Reforming, Autothermal Reforming – CPOX)
.Power-to-Liquids (Alkaline Water Electrolysis, PEM, Solid Oxide Electrolysis, co-SOE)
.CO₂ (SOE, Reverse Water Gas Shift – RWGS)

Where the CO₂ Comes From?

Industrial Processes

How to Produce Hydrogen? Hytron's Project and Product Portfolio – Thermochemical

Natural Gas and Ethanol Reforming

.Integrated, Autonomous and Supervised Systems .Proprietary Supervisory Platform (SCADA) & Control Software .Up to 250 Nm³/h H₂ (single unit)

.Hydrogen Purity up to 99.9999% (6.0)

.Typical Operating Pressure: 10 bar_g

."All-in-One" Solution (Feed Treatment, Water Purification, Reforming & Shift Conversion, Thermal Management, Heat Recovery, H₂ Purification and Purity Supervision)

Reforming of Alternative Feedstocks

.Biogas

.Glycerol

.Vegetable Oil

R&D Scope:

.Tars

Rotary Kiln Slow Pyrolysis of Solid Wastes

.Biomass

.Industrial Residues

.Municipal Solid Waste

Natural Gas Steam-Reforming for H₂ Production

Technical Specifications			
Process	Steam-Reforming		
Fuel	Natural Gas ²		
Specific Fuel Consumption ³	0.43 Nm ³ GN / Nm ³ H ₂		
Specific Water Consumption ^{3,4,5}	1.85 L H ₂ O / Nm ³ H ₂		
Reformate Output Pressure	10.5 bar _g		
Reformate Output Temperature	Up to 5°C Below environment		
Standard H ₂ Purity ⁶	99.999% (v/v)		
H ₂ Purification Process	PSA (Pressure Swing Adsorption)		
H ₂ Output Pressure	10.0 bar _g		
Specific Power Demand (inc. Utilities)	0.42 kWh / Nm ³ H ₂		
N ₂ Consumption ⁷	5.5 Nm ³		

²LHV_{NG}=10,960 kcal/kg (Mass Density_{NG}=0.7541 kg/Nm³ @ 101.3 kPa; 30°C)
 ³Producing H₂ 5.0
 ⁴Tap Water (Process Water Purification Integrated)
 ⁵Without Condensate Recovery
 ⁶Higher Values Under Request

⁷Each Complete Cycle of Start-up & Shutdown

NG-SR Pilot Plant fully Operational

arsesp

do estado de São Paulo

comgos 🗸

Ethanol Steam-Reforming for H₂ Production

Hytron

Technical Specifications			
Process	Steam-Reforming		
Fuel	Hydrated Ethanol ¹		
Specific Fuel Consumption ³	0.68 L EtOH / Nm ³ H ₂		
Specific Water Consumption ^{3,4,5}	1.60 L H ₂ O / Nm ³ H ₂		
Reformate Output Pressure	10.5 bar _g		
Reformate Output Temperature	Up to 5°C Below environment		
Standard H2 Purity ⁶	99.999% (v/v)		
H ₂ Purification Process	PSA (Pressure Swing Adsorption)		
H ₂ Output Pressure	10.0 bar _g		
Specific Power Demand (inc. Utilities)	0.21 kWh / Nm ³ H ₂		
N ₂ Consumption ⁷	5.5 Nm ³		
 ¹LHV_{EtOH}: 4,975 kcal/L (Mass Density_{EtOH}: 0.7893 kg/L @ 30°C; 96.4% GL) ³Producing H₂ 5.0 ⁴Tap Water (Process Water Purification Integrated) ⁵Without Condensate Recovery ⁶Higher Values Under Request 			

⁷Each Complete Cycle of Start-up & Shutdown

EtOH-SR Pilot Plant under Construction

Non-Catalytic Partial Oxidation (POX)

POX Pilot Plant Basic Specifications			
Process	Non-Catalytic Partial Oxidation		
Fuel	Hydrated Ethanol		
Fuel Flowrate (Reforming)	16.0 L/h		
Fuel Flowrate (Heat)	4.0 L/h		
Process Water Flowrate ^{4,5}	19.5 L/h		
H ₂ Rated Capacity ³	21 Nm³/h		
Specific Power Demand	0.206 kWh/Nm ³ H ₂		

¹LHV_{EtOH}: 4,975 kcal/L (Mass Density_{EtOH}: 0.7893 kg/L @ 30°C; 96.4% GL)
 ³Producing Reformate
 ⁴Tap Water (Process Water Purification Integrated)
 ⁵Without Condensate Recovery

EtOH-POX Pilot Plant Ready for Operation

Non-Catalytic Partial Oxidation (POX)

Hutron

PID Parameters Tunned According to Technical Demands

Upper Profile: Burner @ Oxidizing Conditions Heat Generation to Steam-Reforming Process

Right Profile: Burner @ Reducing Conditions Reformate Generation through Partial Oxidation

How to Produce Hydrogen? Hytron's Project and Product Portfolio – Electrochemical

Water Electrolysis

- .PEM and Alkaline Technologies
- .Integrated, Autonomous and Supervised Systems
- .Proprietary Supervisory Platform (SCADA) & Control Software
- .Up to 420 Nm³/h H₂ (single unit)
- .Hydrogen Purity up to 99.9999% (6.0)
- .Typical Operating Pressure: 40 bar_g
- ."All-in-One" Solution (Process Water Purification, Electrolysis, Thermal Management, H₂ Purification and Purity Supervision)

R&D Scope:

Partnership in SOEC (Solid Oxide Electrolysis Cell) for: .Water Electrolysis (H₂ Production) .Carbon Dioxide Electrolysis (CO Production) .Co-Electrolysis for e-SynGas Production

Water Electrolysis Technology Assessment

	Alkaline	PEM	SOEC
Operating Pressure	< 30 bar _g	< 85 bar _g	< 1 bar _g (10)
Operating Mode	Balanced	Differential	Balanced
Operating Temperature	< 80°C	< 80°C	< 800°C
Current Density	< 400 mA/cm ²	< 6.000+ mA/cm ²	< 600 mA/cm ²
DC Spec. Power Cons. (BoL)	$4.2 - 5.8 \text{ kWh/Nm}^3 \text{ H}_2$	4.0 – 4.7 kWh/Nm ³ H ₂	$3.7 - 4.0 \text{ kWh/Nm}^3 \text{ H}_2$
Stack Lifetime	< 90,000 h	> 90,000 h	NA
System Lifetime	< 90,000 h	172,000 h	NA
Operating Range	25 – 130%	1-300%	25 – 110%
Start-up	60 – 600 s	1 – 180 s	~ 3.600 s
Ramp-up	0,2 - 20%/s	Up to 100%/s	NA
Ramp-down	0,2 - 20%/s	Up to 100%/s	NA
Shut-down	60 – 600 s	10 – 60 s	~ 1.200 s
Process Water	< 5 μS.cm ⁻¹ (500 kΩ.cm ⁻¹)	< 0.1 μS.cm ⁻¹ (10 MΩ.cm ⁻¹)	< 1 μS.cm ⁻¹ (1 MΩ.cm ⁻¹)
Bulk H ₂ Purity	99,5%	99,99+%	99,5%

Hytron

Alkaline Water Electrolysis

Eletrosul AES

Technical Specifications			
Process	Alkaline (Bipolar Pressurized) - 60°C		
Electrolyte	KOH _{aq} (25-30% w/w)		
Capacity	1 Nm ³ /h H ₂		
H ₂ Output Pressure	12 bar _g		
H ₂ Output Temperature	Up to 5°C above environment		
Raw H ₂ Purity ²	99.5% (v/v)		
Process Water Spec.	< 5 µS.cm ⁻¹		
DC Specific Power Demand	5.70 kWh / Nm ³		
AC Specific Power Demand (+ Utilities)	6.35 kWh / Nm ³		
N ₂ Consumption ³	1.0 Nm ³		

²Without additional purification ³Each complete cycle of start-up and shutdown

PEM Water Electrolysis

Technical Specifications		
Process	PEM (Bipolar Pressurized) - 70°C	
Capacity	20 Nm ³ /h H ₂	
H ₂ Output Pressure	40 bar _g	
H ₂ Output Temperature	Ambient	
Raw H ₂ Purity	99.99+% (v/v; saturated)	
O ₂ Content in H ₂ Stream	8 – 20 ppm	
H ₂ Content in O ₂ Stream	< 0.1% (v/v; saturated)	
Final Hydrogen Purity	99.99% (v/v; dewpoint ≤ -30°C)	
Purification Process	Adsorption Dryer	
Process Water Specification	< 0.1 μS.cm ⁻¹ (10 MΩ.cm ⁻¹)	
DC Specific Power Demand (@3.000 mA/cm ²)*	4.7 kWh / Nm ³	
DC Specific Power Demand (@1.500 mA/cm ²)	4.2 kWh / Nm ³	
AC Specific Power Demand*	5.5 kWh / Nm ³	
AC Specific Power Demand (+ Utilities)*	5.7 kWh / Nm ³	
N ₂ Consumption	0 Nm ³	
	CESP Compenhia Energética de São Paulo	

Hytron

PEM Electrolyser under Comissioning

What the Renewables Could Lead For? Power-to-X

Where the CO₂ Comes From?

Direct Air Capture

Ethanol / Biogas

Industrial Processes

Synthesis System Can be Optimized for Preferred Products, such as:

.e-Kerosene .e-Gasoline .e-Diesel .e-Olefins .e-Plastics .e-Cosmetics .e-Specialties

Current, and Improved, Technologies

Current Paradigm

Decarbonization for a Renewable Economy

Customers

() Hytron

R&D Agencies

GEDANEEL AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Hytron

Contact:

Antonio Marin R&D and Operations Director antonio@hytron.com.br

www.hytron.com.br

