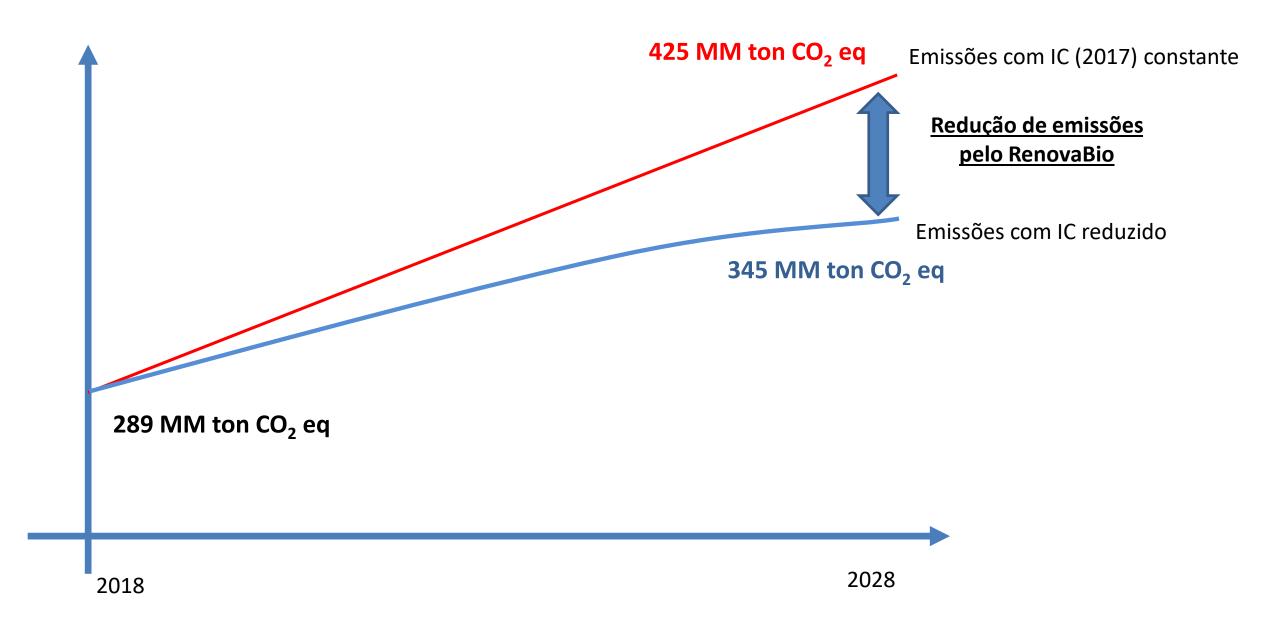


Política Nacional de Biocombustíveis Lei nº 13.576/17

4ª Reunião do Comitê RenovaBio

Modelo RenovaBio Cenário, Meta, Premissas e Impactos

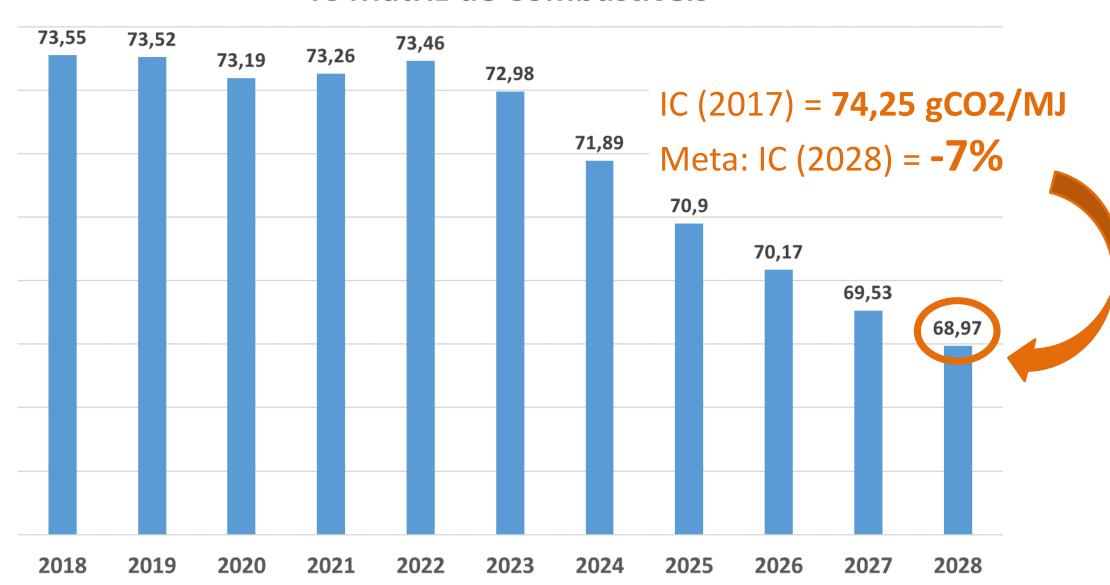
Entradas do Modelo



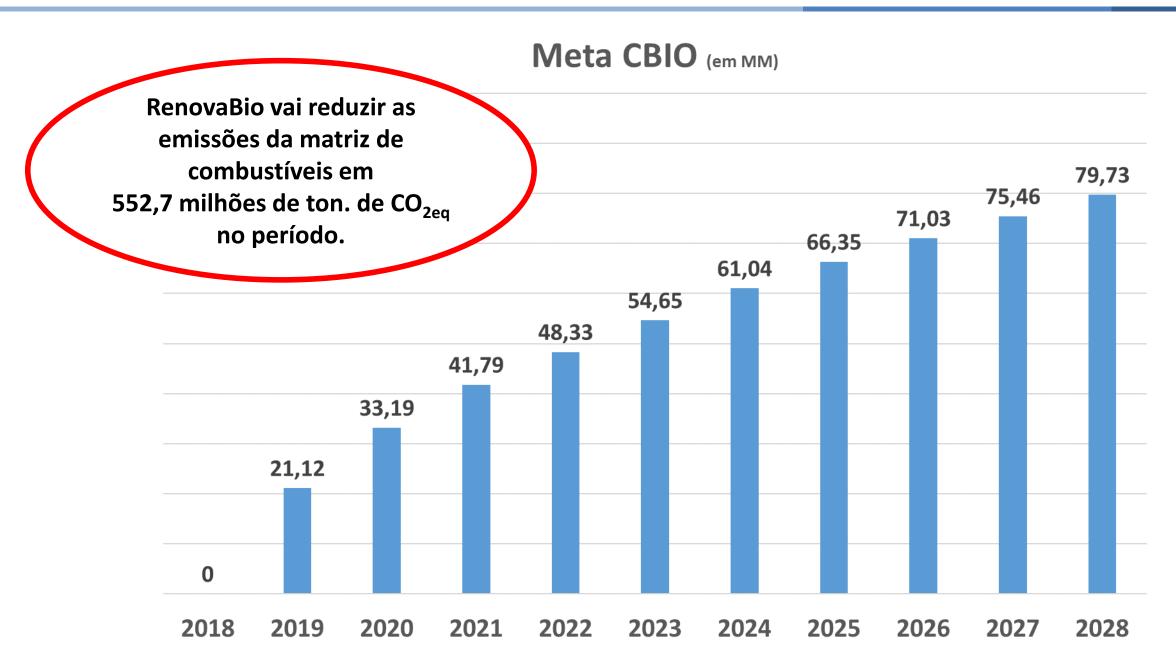
- Capacidade de produção nacional dos combustíveis
- Eficiência ambiental [IC dos Combustíveis (Inicial)]
- Evolução da Capacidade Certificada
- Evolução da participação dos veículos flex na frota
- Fator de apropriação do CBIO
- Ganho de eficiência dos veículos novos
- Meta de CBIO e Intensidade de Carbono da Matriz de Combustíveis (Emissões por unidade de energia)
 [gCO₂eq/MJ] correspondente
- Margem de refino dos combustíveis fósseis
- Participação de Biodiesel Autorizativo
- Percentual de mistura de Biodiesel
- Percentual de mistura de Biometano

- Percentual de mistura de BioQAv
- Taxa de crescimento da Frota
- Taxa de ganho de eficiência ambiental para os combustíveis
- Variação na capacidade ociosa da produção nacional dos combustíveis
- Valor de Referência do CBIO
- Variação da Demanda Ciclo-Aviação
- Variação da Demanda Ciclo-Diesel
- Variação da Demanda Ciclo-Otto
- Variação da Demanda GNV

Emissões da matriz de combustíveis

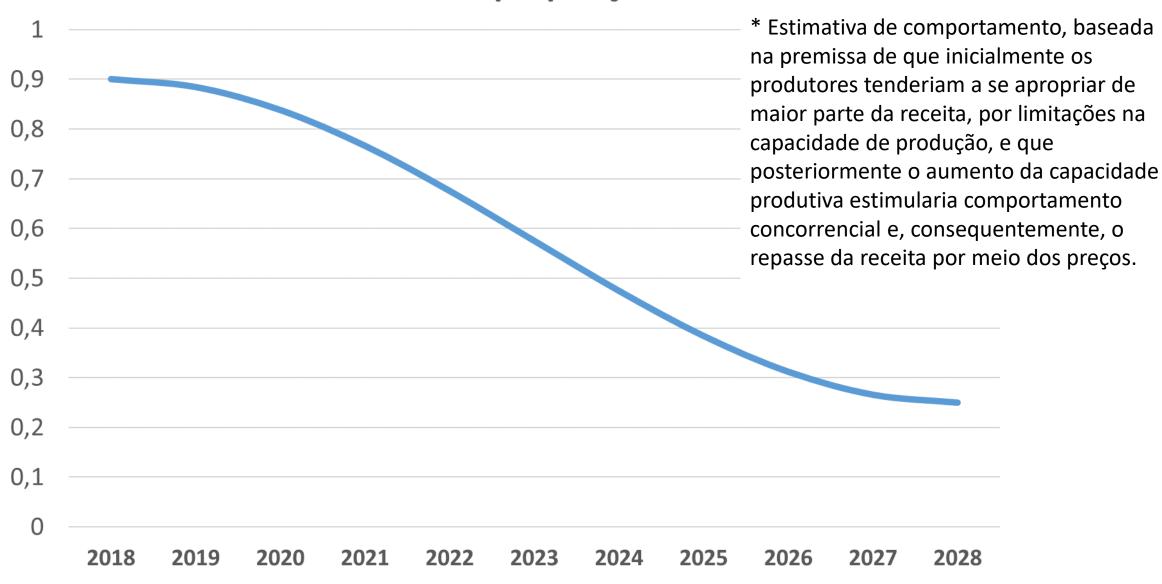


Definição da Meta em Intensidade de Carbono (IC)

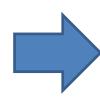


IC Matriz de Combustíveis

Definição da Meta em CBIOs



Curva de Apropriação do CBIO



Preço de Carbono

Table 1.1 CO₂ price in selected regions by scenario (\$2016 per tonne)

	Region	Sector	2025	2040
Current Policies Scenario	Canada	Power, industry, aviation	15	31
	European Union	Power, industry, aviation	22	40
	Korea	Power, industry	22	40
New Policies Scenario	South Africa	Power, industry	10	24
	China	Power, industry, aviation	17	35
	Canada	All sectors	25	45
	European Union	Power, industry, aviation	25	48
	Korea	Power, industry	25	48
Sustainable Development	Brazil, China, Russia, South Africa	Power, industry, aviation*	43	125
Scenario	Advanced economies	Power, industry, aviation*	63	140

	(em US\$)				
	2020	2025	2030	2035	2040
Current P C (EU)	10	22	28	34	40
New P C (EU)	10	25	33	40	48
BR, China, Russia e AS	10	43	70	98	125
Economias Desenvolvidas	10	63	89	114	140
	(em Reais)*				
	2020	2025	2030	2035	2040
Current P C (EU)	34	75	95	116	136
New P C (EU)	34	85	111	137	163
BR, China, Russia e AS	34	146	239	332	425
Economias Desenvolvidas	34	214	301	389	476

Uma das funções do Comitê RenovaBio, definidas no Decreto, é monitorar a oferta, a demanda e os preços do CBIO.

O resultado desse monitoramento auxiliará, no ciclo seguinte, a definição/ajuste da meta e dos cenários

	Preço (R\$/ton)*
Valor do preço de	34
carbono considerado	

Entrada no modelo

* Dólar considerado: R\$ 3,40

^{*} Coverage of aviation is limited to the same regions as in the New Policies Scenario.

Entradas – Eficiência Ambiental

- Eficiência ambiental [IC dos Combustíveis (Inicial)]
- Taxa de ganho de eficiência ambiental para os combustíveis

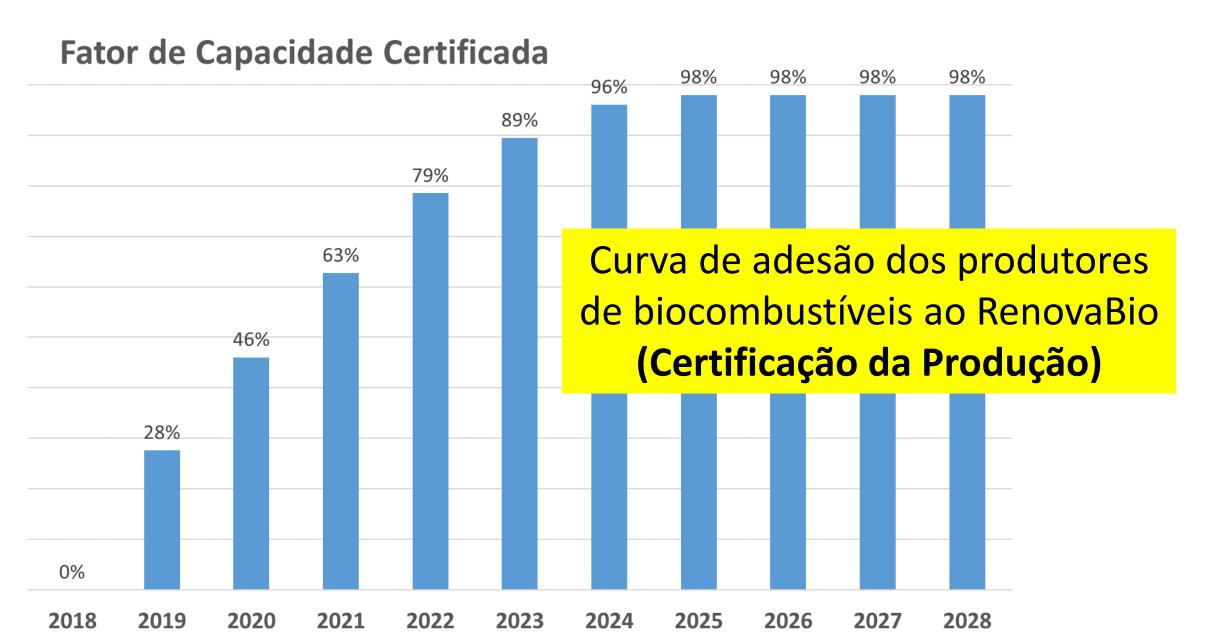
Entradas – Eficiência Ambiental

	Intensidade de
Combustível	carbono
Combustives	(CO2eq/MJ)
Etanol Anidro	(00204113)
Etanol 1G	20,51
Etanol 2G Stand Alone	4,41
Etanol 1G2G	18,63
Etanol de Milho Flex	22,55
Etanol de Milho Stand Alone	26,13
Etanol de Milho Importado	40,35
Etanol Hidratado	
Etanol 1G	20,79
Etanol 2G Stand Alone	4,70
Etanol 1G2G	18,91
Etanol de Milho Flex	22,83
Etanol de Milho Stand Alone	26,47
Etanol de Milho Importado	-
Biodiesel	
Biodiesel soja	26,70
Biodiesel sebo	3,80
Biometano (96,5% metano)	\sim
Biometano de Biogás de Aterro Sanitário	7,44
Biometano de Torta de Filtro	4,84
Biometano de Vinhaça	4,01
Biometano de Dejetos Suínos	3,95
Biometano de Dejetos Bovinos	3,96
BioQAV HEFA	34,65

Eficiência Ambiental dos Combustíveis [gCO2eq/MJ]:

 Valores médios obtidos pela RenovaCalc^{MD} para os biocombustíveis; e

 Valores de referência da literatura para os derivados de petróleo.


Combustível Fóssil Equivalente	Intensidade de Carbono do CFE [g CO₂eq./MJ]	Referência
Gasolina	87,4	Cavalett et al., 2016
Diesel	86,5	GP2 - USP, 2012
Média entre Gasolina, Diesel e GNV	86,8	GHG Protocol, 2012
Querosene de aviação	87,5	Jong et al., 2017

Ganho de Eficiência Ambiental:

o 2% a.a. para todos os biocombustíveis.

Entradas – Eficiência Ambiental

Entradas – Ciclo Otto

- Aumento de consumo por ganho de eficiência nos veículos novos (Rota 2030)
- Evolução da participação dos veículos flex na frota
- Ganho de eficiência dos veículos novos
- Percentual de mistura de Anidro
- Taxa de crescimento da Frota
- Variação da Demanda Ciclo-Otto

Entradas – Ciclo Otto

Demanda Ciclo Otto:

modelo considera um crescimento de 24,3% no período 2018-2028.

Referências:

- o EPE
- Plano de Negócios (Petrobras)
- Outros estudos setoriais

Taxa de Crescimento da Frota: 2% aa.

Ganho de Eficiência em Veículos novos (CO):

- 12% até 2022
- 18% até 2027

Entradas – Ciclo Otto

<u>Demanda GNV</u>: modelo considera um mercado estagnado no patamar de 2,5 MM m³.

Curva de Indiferença do Consumidor V. Flex: modelo considera uma função que corresponde ao uso de etanol hidratado médio e a paridade de preços (Etanol Hidratado/Gasolina C).

Participação dos veículos Flex na Frota: 74,1% (2018) a 89,3% (2028)

Entradas – Ciclo Diesel

- Participação de Biodiesel Autorizativo
- Percentual de mistura de Biodiesel
- Variação da Demanda Ciclo-Diesel

Entradas – Ciclo Diesel

Demanda Ciclo Diesel:

modelo considera um crescimento de 2,7% aa no período 2018-2028.

Percentual de Misturas Obrigatórias:

Biodiesel: B10*

BioQAv: 0%

Biometano: 0%

* Aumentos de percentuais de mistura dependem de conclusão dos testes de mistura

Entradas - GNV/Biometano e Aviação/Qav/BioQAv

- Percentual de mistura de Biometano
- Variação da Demanda GNV

- Percentual de mistura de BioQAv
- Variação da Demanda Ciclo-Aviação

Entradas - GNV/Biometano e Aviação/Qav/BioQAv

Percentual de Misturas Obrigatórias:

BioQAv: 0%

Biometano: 0%

<u>Demanda GNV</u>: modelo considera um mercado estagnado no patamar de 2,5 MM m³.

Demanda QAv:

modelo considera um crescimento da demanda de 2,8% aa no período.

Entradas – Abastecimento

- Capacidade de produção nacional dos combustíveis
- Margem de refino dos combustíveis fósseis
- Oferta nacional de derivados

Premissas – Abastecimento

Capacidade de Produção dos Combustíveis:

modelo considera o histórico de produção dos derivados de petróleo e biocombustíveis, bem como a perspectiva de investimentos que estão em andamento.

Gasolina = 30,08 MM m³ (Produção nacional verificada em 2014)

Diesel = 60 MM m³ (Considera novos investimentos em refino previstos)

Etanol Anidro = 13,5 MM m³ (Produção de 20 litros por tonelada moída)

QAv = 7,4 MM m³ (Máximo histórico)

Premissas – Abastecimento

Margem de Refino sobre os Combustíveis Fósseis:

Valores médios do custo de produção/refino dos derivados de petróleo em função do preço do petróleo:

Diesel: +8%

o Gasolina: +10%

o QAv: +10%

o **GNV**: -20%

Premissas – Abastecimento

Oferta nacional de derivados:

- Diesel: Aumento progressivo da produção até 2024
- Gasolina A: Aumento progressivo da produção até 2021

- Emissões Totais da Matriz de Combustíveis [ton CO₂eq]
- **Demanda por combustível** [m³]
- Importação de combustível [m³]
- Oferta Potencial de CBIO
- Volume de CBIO por biocombustível
- Preço da Cesta de Combustíveis
- Participação relativa dos Combustíveis

Impacto na Demanda de Combustíveis

Meta de Redução de IC da Matriz de Combustíveis	-7% (2028)
Participação (energética) dos Biocombustíveis na Matriz	20% → 25,5 %
Variação da Demanda de Derivados de Petróleo	80% → 74,5 %
Dependência Externa em Combustíveis	11,5% → 10%

Mercado Total de CBIO (R\$ total)

Cenários de Preço do CBIO x Meta de CBIO

Mercado estimado de CBIOs em R\$ (em 2028)

	Preço (R\$/ton)	Quantidade CBIO (2028)	Total
Meta de Redução de IC da Matriz de Combustíveis -7% (2028)	17	79,7 MM	R\$ 1,36 B
	34		R\$ 2,71 B
	146		R\$ 11,6 B

Impacto em preços de aquisição de combustíveis pela distribuidora

CBIO = R\$ 34,00 e Redução de IC na matriz = -7%:

Combustível	Impacto nos preços em 2028
Gasolina A	+ 0,3%
Diesel A	+ 0,5%
QAV	+ 0,7%
Anidro	- 1,1%
Hidratado	- 1%
Biodiesel	- 1,2%
Gasolina C	- 0,01%
Diesel B	+ 0,3%

Evolução do mercado dos combustíveis (MM m³)

Redução de IC na matriz = -7%:

Combustível	Volume em 2018	Volume em 2028
Gasolina A	31,1	30,2
Anidro	11,5	11,2
Gasolina C	42,6	41,4
Hidratado	15,2	35,7
Etanol Total	26,7	46,9
GNV	2,5	2,5
Biometano	0	0
Diesel A	51,2	66,5
Biodiesel	5,7	7,4
Diesel B	57,0	73,9
QAV	7,2	9,5
BioQAv	0	0

Evolução da Dependência Externa (MM m³)

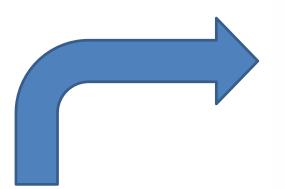
Redução de IC na matriz = -7%:

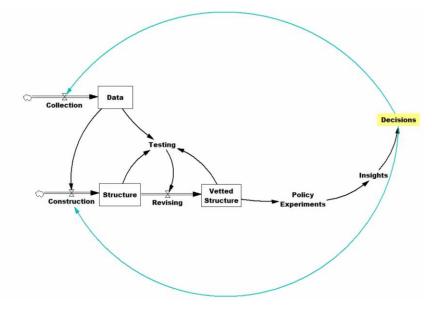
Combustível	Importação em 2018	Importação em 2028
Gasolina A	3,4	0,1
Anidro	0,4	0
Diesel A	10,7	13,0
QAV	0,6	2,1

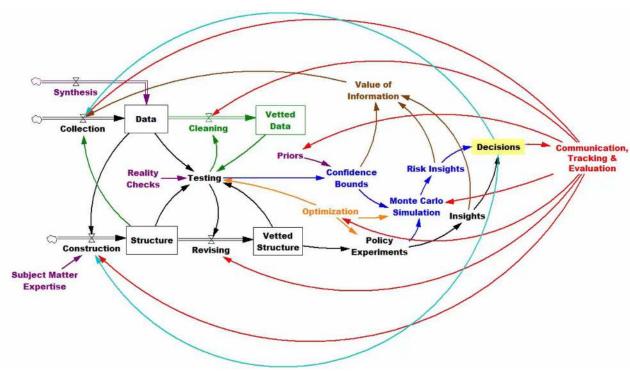
Pontos de Aperfeiçoamento no Modelo

- Itens a serem incorporados ao modelo:
 - composição da oferta de matérias primas e limitadores da expansão (área de cultivo, açúcar, farelo de soja, petróleo e derivados etc.)
 - valores de demanda e efeito dos impostos por UF
 - revisão dos valores de IC a partir das notas de eficiência energética-ambiental das unidades certificadas
 - avaliação da contribuição do RenovaBio ao NDC
 - ganhos de eficiência na frota diesel
 - parâmetros relativos aos compromissos de redução de emissões do setor de Aviação
 - cenários probabilísticos e módulos de otimização
 - retroalimentação do preço do CBIO
 - reavaliação do critério de alocação do custo do CBIO pelas distribuidoras

Pontos de Aperfeiçoamento no Modelo




- Modelos a serem avaliados para incorporação ao modelo atual:
 - modelos de apoio ao RenovaBio desenvolvidos pela EPE
 - modelos sobre impactos da qualidade do ar desenvolvidos pelo Prof. Paulo Saldiva (USP)


Construção contínua do modelo

Hoje, o modelo descreve as relações funcionais, os parâmetros e as equações que governam o mercado de combustíveis, e tem como saída os impactos da aplicação da política pública.

Em um processo de aprimoramento contínuo, diversos recursos serão incorporados gradativamente, tais como: refinamento dos dados, módulos de otimização, testes de intervalos de confiança, análise de risco etc.